SHORT COMMUNICATION

Far infrared and ³⁵Cl NQR spectra of triphenyltin chloride*

Recently molecular weight determination has shown triphenyltin chloride to be a monomer in solution¹. The observed vibrational modes in the far infrared spectrum of solid triphenyltin chloride are presented in Table 1 and interpreted in terms of $C_{3\nu}$ symmetry for the C₃SnCl skeleton of the molecule in the solid state.

TABLE 1

SKELETAL VIBRATIONS OF Sn(C6H5)3Cl

Description	Symmetry (point group C _{3v})	IR (solid) (cm ⁻¹)
$Sn(C_6H_5)_3$ deformation	a1	85
$Sn(C_5H_5)_3$ deformation	e	152
C ₆ H ₅ -SnCl bending	е	180
Sn-Cl stretching	a_1	332
Sn-C ₆ H ₅ stretching	a1	230
Sn-C ₆ H ₅ stretching	e	449 (broad

The Sn-C₆H₅ degenerate stretching mode (e) in triphenyltin chloride was observed at 449 cm⁻¹ (IR and Raman) in solution². The present investigation shows this fundamental mode at the same position in the solid state. The broadening of this mode may be due to a "solid state" effect. The Raman spectrum of triphenyltin chloride in solution², showed two more bands at 214 cm⁻¹ due to Sn-C₆H₅ stretching (a₁) and at 329 cm⁻¹ due to Sn-Cl stretching (a₁). These fundamental modes are observed here at 230 cm⁻¹ and at 332 cm⁻¹ respectively in the solid state. The bands at 85 cm⁻¹, 152 cm⁻¹ and 180 cm⁻¹ in the far infrared spectrum are attributed to two deformations (a₁ and e) and the C₆H₅-SnCl bending (e). Thus the skeleton of Sn-(C₆H₅)₃Cl molecule favours C_{3v} symmetry.

The 35 Cl NQR spectrum of Sn(C₆H₅)₃Cl was searched in the range 12.5 to 28.5 Mc/s at 77°K. The apparatus used has been described by Smith and Tong³. A single resonance signal of 35 Cl was observed at 13.690 Mc/s. The observed frequencies and calculated nuclear quadrupole coupling constants of 35 Cl in phenyltin chlorides and tin tetrachloride are given in Table 2.

The decrease in the value of $|e^2 \cdot Q \cdot q_{zz}|$ from SnCl₄ to $(C_6H_5)_3$ SnCl can be attributed to the increase in ionic character and enhanced π bonding in Sn-Cl bonds. However one expects that the contribution due to change in ionic character is more dominant than enhanced π bonding⁵.

We expect distortion of bond angles from 109° 28' (ref. 6) and electric field gradient at the tin nucleus in alkyl- and aryltin chlorides arising due to $d_{\pi}-p_{\pi}$ interaction

^{*} This work was done at the University of Newcastle Upon Tyne.

Compound	Observed frequencies (Mc/s) (77°K)	e²·Q·q₂s calcd.⁵ (Mc/s)
SnCl4 ⁴	24.100	48.200
C ₆ H ₅ SnCl ₃ ⁵	21.166	42.332
$(C_6H_5)_2$ SnCl ₂ ⁵	16.947	33.892
(C ₆ H ₅) ₃ SnCl ^a	13.690	27.380

OBSERVED FREQUENCIES AND CALCULATED NUCLEAR QUADRUPOLE COUPLING CONSTANTS OF ³⁵Cl in Phenyltin Chlorides

^a Present investigation. ^b $|e^2 \cdot Q \cdot q_{zd}|$ is calculated by assuming asymmetry parameter equal to zero.

and the ionic character of Sn-Cl bond. This is reflected as quadrupole splitting in Mössbauer spectra of these compounds^{7,8}. Contrary to these expectations the experiments show no quadrupole splitting in $(C_6H_5)_3$ SnH, $(C_6H_5)_3$ SnLi, $[(C_6H_5)_3$ Sn]₂, etc.⁹. This awaits a satisfactory explanation.

Triphenyltin chloride was prepared according to the method of Kocheshkov, Mad and Alexandrov¹⁰.

The infrared spectrum was recorded between 4000 cm^{-1} and 70 cm^{-1} on instruments previously described¹¹.

Acknowledgements

I am grateful to Drs. J. A. S. SMITH and G. S. RAO for discussion of results and Dr. D. A. TONG (University of Leeds) for running the ³⁵Cl NQR spectrum. I am also thankful to Prof. N. N. GREENWOOD for providing laboratory facilities during my stay at the University of Newcastle Upon Tyne (from 1962-65).

Chemistry Division, Bhabha Atomic Research Centre, Bombay-74 (India)

T. S. Srivastava

- 1 V. I. GOLDANSKII, The Mössbauer Effect and its Applications in Chemistry, Consultants Bureau Enterprises, New York, 1964, p. 36.
- 2 H. KRIEGSMANN AND H. GEISSLER, Z. Anorg. Allgem. Chem., 323 (1963) 170.
- 3 J. A. S. SMITH AND D. A. TONG, Chem. Commun., (1965) 3.
- 4 R. LIVINGSTON, J. Phys. Chem., 57 (1953) 496.
- 5 E. D. SURGER AND J. D. GRAYBEL, J. Am. Chem. Soc., 87 (1965) 1464.
- 6 R. J. GILLESPIE, J. Chem. Educ., 40 (1963) 295.
- 7 M. GORDEY-HAYES, J. Inorg. Nucl. Chem., 26 (1964) 2306.
- 8 R. H. HERBER AND H. I. PARISI, Inorg. Chem., 5 (1966) 772.
- 9 N. N. GREENWOOD AND T. G. GIBB, J. Chem. Soc., A, (1966) 43.
- 10 K. A. KOCHESHKOV, M. M. NAD AND A. P. ALEXANDROV, Ber., 67 (1934) 1348.
- 11 N. N. GREENWOOD, T. S. SRIVASTAVA AND B. P. STRAUGHAN, J. Chem. Soc., A, (1966) 699.

Received March 21st, 1967

J. Organometal. Chem., 10 (1967) 373-374